Геотермальная энергетика

Геотермальная энергия Новости

geoterm1

Значительная часть поверхности Земли обладает большими запасами геотермальной энергии вследствие вулканической деятельности, радиоактивного распада, тектонических сдвигов и наличия участков магмы в земной коре.

В ряде географических районов использование геотермальных источников может существенно увеличить выработку энергии, так как геотермальные электростанции (ГеоТЭС) являются одним из наиболее дешевых альтернативных источников энергии. Только в верхнем трехкилометровом слое Земли содержится свыше 1020 Дж теплоты, пригодной для выработки электроэнергии. Такое количество энергии позволяет рассматривать теплоту Земли как альтернативу органическому топливу. Сама природа дает человеку в руки источник албтернативной энергетики

Геотермальные ресурсы

Источники геотермальной энергии по классификации Международного энергетического агентства делятся на 5 типов.

1. Месторождения геотермального сухого пара. Они сравнительно легко разрабатываются, но довольно редки. Тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников.
2. Источники влажного пара (смеси горячей воды и пара). Они встречаются чаще. При их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности).
3. Месторождения геотермальной воды (содержат горячую воду или пар и воду). Они представляют собой так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой.
4. Сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более). Их запасы энергии наиболее велики.
5. Магма, представляющая собой нагретые до 1300 °С расплавленные горные породы.

Геотермальные ресурсы — это тепловая энергия твердой, жидкой и газообразной фаз земной коры, которая может быть эффективно извлечена и использована. Опыт, накопленный различными странами и Россией, относится в основном к использованию природного пара и термальных вод (парогидротерм), которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т. е. тепловой энергии горячих горных пород, температура которых на глубине 3. . .5 км обычно превышает 100 °С.

Общий выход тепла из недр Земли на ее поверхность втрое повышает современную мощность энергоустановок мира и оценивается в 30 ТВт. При этом средняя плотность глубинного теплового потока составляет всего 0,06 Вт/м2, что примерно в 3500 раз меньше средней плотности солнечного излучения. Общее количество теплоты, которым располагает Земля, в топливном эквиваленте составляет примерно 4,5/108 трлн. т.у.т. Но тепло Земли очень «рассеянно», и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть энергии, накопленная в 5-километровом слое земной коры. К тому же, с технической и экономической точек зрения земное тепло можно осваивать только в нескольких регионах с благоприятными геологическими условиями.

Использование геотермального тепла

Геотермальное тепло можно утилизировать либо «непосредственно», либо преобразовывать его в электричество, если температура теплоносителя достигает более 150 °С.

апрямую геотермальное тепло в зависимости от температуры может использоваться для отопления зданий, теплиц, бассейнов, сушки сельскохозяйственных и рыбопродуктов, выпаривания растворов, выращивания рыбы, грибов и т.д.

В последние годы во многих странах стали применять тепловые насосы, в которых используется низкопотенциальная тепловая энергия с температурой 4 — 6 градусов °С и выше. В качестве источника такой энергии может быть использовано тепло как естественного происхождения (наружный воздух; тепло грунтовых, артезианских и термальных вод; воды рек, озер, морей и других незамерзающих природных водоемов), так и тепло техногенного происхождения (промышленные сбросы, очистные сооружения, тепло силовых трансформаторов и любое другое бросовое тепло).

Сегодня уже в 80 стран мира в той или иной степени используется геотермальное тепло. В большей части из них, а именно в 70 странах, утилизация этого вида природного тепла достигла уровня строительства теплиц, бассейнов, использования в лечебных целях и т.д. А ГеоТЭС имеются в десяти странах. Установленная мощность геотермальных электростанций возросла с 678 МВт, в 1970 г. до 8000 МВт в 2000 г. В этом направлении лидируют такие страны как: США — 2228 МВт, Филиппины — 1909 МВт, Италия — 785 МВт, Мексика — 755 МВт, Индонезия — 589 МВт. Исландия практически полностью обеспечивает себя электрической и тепловой энергией за счет своей геотермальной и гидро- энергии. Среднегодовой рост мощности ГеоТЭС за последние 30 лет составил 8,6%. Установленная мощность геотермальных тепловых установок за последние 20 лет возросла с 1950 до 17175 МВт.

В России геотермальная энергия занимает первое место по потенциальным возможностям ее использования. Экономический потенциал геотермальной энергии составляет 115 млн. т.у.т. в год. Выявленные запасы геотермальных вод с температурой 40-200 °С и глубиной залегания до 3500 м на территории России могут обеспечить получение примерно 14 млн. м3 горячей воды в сутки, что по количеству энергии эквивалентно 30 млн. тонн условного топлива. В то же время выведенные на земную поверхность запасы геотермальных вод используются всего на 5%. В настоящее время в стране эксплуатируются месторождения геотермальных вод на Сахалине, Камчатке и Курильских островах, в Краснодарском и Ставропольском краях, Дагестане, Ингушетии.

о оценкам специалистов, запасы парогидротерм Камчатки и Курильских островов (эти зоны молодого вулканизма отличаются максимальной близостью геотермальных вод к поверхности земли) могут обеспечить мощность геотермальных электростанций не менее 1000 МВт. На Камчатке, на Паратунском месторождении в 1967 году была создана опытно-промышленная геотермальная электростанция мощностью около 500 кВт — это был первый опыт получения электроэнергии с помощью геотермального тепла в России. Тогда же началась первая в России промышленная выработка электроэнергии на Паужетской геотермальной электростанции. Ее установленная мощность составляет 11 МВт.

Поскольку в последнее десятилетие в мире значительно возрос интерес к возобновляемым источникам энергии, в том числе и к геотермальным электростанциям, в России также активизировались работы в этой области. Особое внимание уделяется развитию геотермальной энергетики на Камчатке. Уже разработана и начала реализовываться программа создания геотермального энергоснабжения этого региона, в результате которой ежегодно будет сэкономлено около 900 тыс. тонн условного топлива. Осенью 2002 года на полуострове введен в строй 2-й энергоблок Мутновской ГеоТЭС, теперь ее мощность составляет 50 МВт.

В программах энергосбережения развитых стран существенное место занимают тепловые насосы, что связано с их высокой эффективностью, экологической чистотой и надежностью. В настоящее время в мире работают около 15 миллионов тепловых насосов мощностью от нескольких кВт до десятков МВт. По прогнозам Мирового энергетического комитета, к 2020 году 75% теплоснабжения в развитых странах будет обеспечиваться тепловыми насосами. Наиболее широко они применяются в США, Японии, Канаде, странах Скандинавии.

В США строительной нормой является использование отводимого от сооружений тепла, в результате более 30% жилых зданий оборудованы тепловыми насосами. В Стокгольме на тепле воды Балтийского моря работает крупнейшая теплонасосная станция мощностью 320 МВт. В России, к сожалению, тепловые насосы пока широкого распространения не получили, и работает их не более 100 единиц суммарной мощностью около 60 МВт. http://www.pomreke.ru/energy-future/

1 comment

  1. APTYP

    Вот если бы добраться до этих геотермальных источников, где температура воды около 60-80 С, тогда не нужен никакой тепловой насос, нужны лишь только циркуляционники для перекачивания горячей воды и теплообменник.

Добавить комментарий